Explosions' remediation: accounting for cost efficiency and nature conservation needs

Sven Koschinski, Meereszoologie, Nehmten, Germany

Introduction (some physics) Modelling of shock wave propagation Implications for marine life Mitigation: Big bubble curtain bubble curtain experiments of the **German Navy** Additional mitigation measures

The shock wave propagates into the (water saturated) body.

Compressibility of air, but not water leads to:

- extreme shear forces at air/water interface, tissue rupture (lung, intestines), internal bleeding
- compression of chest, blood pressure rise, rupture of blood vessels (e.g., brain), fat embolism

Further: displacement of hearing bones

Shock wave – theory

Energetic conversion of explosive creates a gas bubble. Dimensions depend on charge weight.

 Explosive with a high detonation velocity (e.g. TNT): Gas bubble expands faster than underwater sound speed and thus creates a shock wave
Doubling of gas bubble requires to displace 8 times more water volume

3. to 5. Multiple collapses of bubble during its rising (pressure pulses) – counteracting hydrostatic pressure

Modelling of shock wave propagation

Influence of water depth Left 1 m above seafloor, 263 kg TNT Right 1 m below surface, 263 kg TNT

Entfernung in km

Influence of sediment type

Toto in m

Tiefe in m

mud

Sand

Entfernung in km

Sources: von Benda-Beckmann et al. 2015, Nuetzel 2008

Implications for marine life

From thresholds to effect distances

Example for situation 1 m above seafloor with respect to harbour porpoises Calculations for underwater detonations in the Dutch North Sea with specific charges and for specific places

Source: von Benda-Beckmann et al. 2015

Unweighted SEL (dB re 1 µPa²s)

Implications for marine life

From effect distances to risk

Seasonal habitat-based density model

- Based on 2005-2013 harbour porpoise surveys
- Porpoises are where the food is
- But: Incomplete fisheries data (e.g. sandeel beds as explanatory variable)
- Dynamic environment (productivity linked to e.g. frontal patterns, mixing, river plumes, upwelling) does not allow for "exact" predictions
- Year-to-year changes likely

Source: Gilles et al. 2016

Implications for marine life

From risk to mitigation

Avoid detonations! If unavoidable:

- Identify species/populations at risk
- Threatened and protected species require better mitigation
- Collate available biological data
- Avoid sensitive times and areas
- Consider specific behaviour (such as attraction to debilitated fish)
- Identify effect distance (modelling of shockwave propagation)
- Consider use of deterrent devices (choose efficient method, e.g., "seal scarers" work for porpoises but not for seals)
- Compare scaring range and effect distance
- If scaring distance is not sufficient, additional mitigation measures are required
- **Always** make use of observers and passive acoustic monitoring!

Mitigation measures

Big bubble curtains (BBC)

General principles:

- Air bubbles in water act as Helmholtz resonators and take up energy from the pressure wave (increase the temperature)
- Additional scattering and reflection of acoustic energy inside the bubble curtain

- General features of explosions 0.1 kg, 1 kg and 15 kg
- First BC trials with 1 kg charges: Single, double, tripple BC, radius 4 to 6 m
- Single BC with different air volume streams

- General features of explosions 0.1 kg, 1 kg and 15 kg
- First BC trials with 1 kg charges: Single, double, tripple BC, radius 4 to 6 m
- Single BC with different air volume streams

Results:

- Attenuation 11.1 dB to 17.3 dB
- Double BC more effective than triple BC density of bubbles in water matters

- General features of explosions 300 kg
- Single BC trials with radius 22 m

Results:

- Attenuation up to 8 dB
- Mainly at high frequncies (ultrasonic expansion of gas globe)
- At lower frequencies (water pushed away by gas globe) no reduction possible because BC radius was too small

Radius of bubble curtain = 70 m Semicircle for practical reasons (for mitigation: full circle required!)

Results

Attenuation of peak pressure = 19 dB, (6 dB), 16 dB

Mine 4: Bubble curtain not fully closed

2011

BC completed to full circle Main question: How much air is needed? 20 g and 300 kg charges

- full air volume stream (1.0m³/min/m)
- Half air volume stream (0.5m³/min/m)

• no BBC

Results:

- Hardly any difference between full and half air volume stream
- 20 g "scare" charges attenuated by 24 dB (peak)
- 300 kg mines attenuated by 6 dB
- Peak pressure of unattenuated blast was only 1/10 of the expected value
- Explosion in detonation crater
- Large contribution of seismic wave coupling back to water?

How to make a bubble curtain cost efficient

- Use of own platforms saves renting costs for a vessel
- Good preparation saves stand-by costs
- Serial remediation at the same place saves vessel mobilisation costs
- Make bubble curtain diameter as large as necessary but as small as possible to save compressor costs
- Make air volume stream as large as necessary but as small as possible to save compressor costs
- Experience from bubble curtain deployment in the German EEZ of the North Sea: starting from 12.000 Euros for 3 explosions
- Important: Use oil-free compressors (make no compromise, even if cheaper)

Further mitigation measures

Mitigation at source	Mitigating the creation and propagation of the shockwave	Mitigating at the receiver (animal)
Move to different location (shallow, less populated areas)	Shielding, bubble curtain	Timing, season with low animal density
Detonate in air at sea	Shielding, air pocket (e.g., expanded clay pebbles)	Monitoring (visual/ acoustic)
Detonate close to surface	Shielding, burying with sand	Deterrent devices (are they efficient enough?)
"shockwave shaper"	Shielding, air pocket due to small charges	Scare charges are not an option!
Multiple sequential explosions (assuming long- term deterrence)	Shielding, resonant air-filled spheres	
(Jet-cutting)	Timing, low tide	
Deflagration is not an option!	Change policy to avoid detonation	
Place charge in crater	HydroSound Dampers, encapsulated bubbles so	urce: von Benda-Beckmann et al. 2014, amendec

Further mitigation measures

Hydro Sound Dampers Resonators in nets (ballons and foam elements) In ballasted basket at gripper Leightweight system (< 70 t) No compressors needed

At water depths up to 50 m include larger bubbles at the bottom due to increasing hydrostatic pressure

Photos: K.-H. Elmer, Patrice Kunte

Questions?