

Chemical sensing and remediation: the state of the art

Dipl.-Ing. (FH) Claus Böttcher

Licence: Linkware

Rome, 06-DEC-2018

Introduction

- Claus Böttcher
 - Environmental Engineer
 - State* Ministry of Environment, ...
 - Managing Director of the German Program of Underwater Munitions
- Expertise
 - Crisis management & crisis communication
 - Linking stakeholders
 - Sharing information

www.underwatermunitions.de

Courtesy to

- Prof. Dr. E. Achterberg, Dr. Aaron Beck
- Prof. Dr. E. Maser, MSc. J. Strehse
- Prof. Dr. R. Schulz, Dr. O. Mudimu
- Dr. Tobias Knobloch
- Dr. H. Wackerbarth
- Dr. T. Gentz, SubSeaSpec UG
- MSc. Jann Wendt, EGEOS GmbH
- MSc. Nicolas Estoppey
- Dipl.-Ing. P. Rabenecker
- Nadine I. Goldenstein

Outline

- Introduction: the problem of munition constituents (MC) in the marine environment
- Sensors & Methodologies
 - Mass Spectrometry
 - Optical Spectrometry
 - Electrochemistry
 - Chromatography
 - Biochemistry
- What next?
- (Sources & Links)

Approaching MC

Heligoland Island, hunting for shells filled with the nerve agent Tabun

© Bundeswehr, 2008

Kolberger Heide, passive sampling in order to monitor consequences of blast operations

© F. Pfeiffer, 2007

Target compounds

- All manmade, in large scale
- Transformation and metabolic products known

Matrices

Dr. Hainer Wackerbarth, Laserlabor

Monitor pollutants

Munitions-contaminated areas in the Western Baltic Sea

www.AmuCad.org:

Gain knowledge

Rome, 06-DEC-2018

JPI-O - Joint Action "Munitions in the sea"

Chemical sensing (1/3)

- Detect munition constituents (MC)
 - Matrices: sediment, sea water, biota
- Determine type of MC
 - Identify explosive and / or chemical warfare agents
- Track towards the sources
 - Gradient of MC concentration in water column
- Measure concentration of relevant MC

Chemical sensing (2/3)

- Offline sensor
 - Analyse fixed samples (sediment, biota, sea water)
 - Assess post-mission data
- Online sensor
 - Electric or optical sensors
 - (Near) real-time analysis
 - Quick detection: compound triggers activity

Chemical sensing (3/3)

- Obstacles, to be aware of...
- Sampling, storing and analysing MC
 - Adhesive to many polymers
 - Destroyed by UV light
 - Transformation and metabolism
 - Discuss the "non-extractable share" of MC in biota
- Rates of release in marine waters are not linear

_ ...

- Introduction into the environment:
 - Production of TNT
 - Training, testing & practice
 - Military operations
 - Disposal (at sea)
 - Accidents
- Amount WW II
 - Germany: 800.000 t
 - Others: ...

© Duda, 2017 - Uni Kiel

JPI OCEANS

Sensors & Methodologies

- Spectrometry
 - Mass (of molecules)
 - X-ray
 - Optical (Laser, UV)
- Electrochemistry
 - Electron Microscope
 - Ion analysis (IC, CE, FFE)
 - Active surface IC
- Biochemistry
 - Microfluids
 - Biomarker

- Direct measuring
- Sampling strategies
 - Active
 - Passive
- Extraction of target MC from sample
- Assessing the results
- Conclusions and recommendations

Chemical sensing MASS SPECTROMETRY

Chemcatcher®-System

Calibration in lab

Open field experiment

 $\ensuremath{\textcircled{C}}$ Prof. Dr. E. Maser, J. Strehse, Uni Kiel

Field sampling details (GEOMAR)

- Ultraclean double-diaphragm pump
- Camera mounted on pump tubing, in order to sample water directly adjacent to exposed munitions
- Sediment/biota collection with grab or divers

Preparation of bile samples and blank

- 25 μ L bile/ 25 μ L H₂O Eppendorf vials
- addition of internal standard (1,4-DNB)
- final concentration of 50 ng in 30 µL sample

Extraction with acetonitrile (AcCN/CH₃CN)

- reduction of supernatant to a total volume of 50 µL
- injection on HPLC-QQQ-MS

Explosives target analysis

Screening for nitroaromatics

JPI

Source: Nadine Goldenstein, TI-FI

Analytical method (GEOMAR): Development of a method for dissolved explosives compounds in seawater (Gledhill et al., submitted for publication)

- Dissolved samples: preconcentration by solid-phase extraction Sediment and biota: extraction with acetonitrile, dilution/direct injection
- Analysis of TNT and breakdown products using high-performance liquid chromatography (HPLC) and heated electrospray mass spectrometry (HESI-MS)

Thermofisher UltiMate 3000

Thermofisher Q Exactive

Analytical method (GEOMAR): Dissolved explosives in seawater, sediment, biota Detection limits ~fg/L (10⁻¹⁵ g/L dissolved) (Gledhill et al., submitted for publication)

6.E+07 Counts 0 5.E+07 3.E+07 2.E+07 0.E+00 200 300 100 0 TNT (pg)

v = 22000 x

 $R^2 = 0.997$

400

9.E+07 8.E+07

Critical aspects

1. Solid-phase extraction: Seawater matrix removal, signal increase min. 1000x, isotope-labeled TNT and DNB spike

2. Liquid chromatography (HPLC): Reproducible compound separation before mass spec.

3. HESI-mass spectrometric detection: High sensitivity, unequivocal compound identification, allows use of isotope-labeled internal standards

Source: Aaron J. Beck, GEOMAR

Analytical methods: Metals

- Preconcentration by solid-phase extraction (WAKO resin for metals, AG1-X8 for Hg)
- Analysis by inductively coupled plasma mass spectrometry (ICP-MS)

Detection limits in seawater: ng/L - μ g/L

U-Mass Spectrometer

© Dr. Torben Gentz, 2018 http://www.subseaspec.com

Example: Plume of CH₄

Or. T. Gentz, Bremerhaven

Munition compounds in water column: Depth distribution

TNT and degradation compounds in sediments around individual munitions in southwest Baltic Sea

Circle size indicates amount: TNT \rightarrow ADNT \rightarrow DANT

TNT

2-ADNT

TNT in biota (*log ng/g tissue*) collected in southwest Baltic Sea

Bar color: orange samples from munitions dumpsite blue samples away from known munitions sites

TNT

Chemical sensing OPTICAL SPECTROMETRY

Raman spectroscopy

- Raman spectra = finger print of molecules
- Capable of detecting explosives (TNT, RDX, HMDT, Picric acid,...) and chemical warfare agents
- Water is Raman transparent (particles in the water cause trouble)
- Sample time within 5 seconds
- Suitable for undersea explosive and chemical warfare agents detection

Raman spectroscopy

 Suitable for undersea explosive and chemical warfare agents detection

Raman system, adapted for ROV plattform for the exploitation of the sea ground up to 4000 m depth

Source: X. Zhang et al, Applied Spectroscopy 2016, 66, 3, 237-249.

Underwater Raman Sensor for Detecting High Explosives and Homemade Explosives (HMEs)

- Results
 - 2 m detection range for most chemicals in coastal seawater
 - Ammonium nitrate (NH₄NO₃, AN) through 10 m seawater and 3 plastic bags

Form: Shiv K. Sharma et al., Hawaii, USA, supported by Office of Naval Research and NASA

Other Laser-based techniques

- Laser-induced breakdown spectroscopy (LIBS)
 - Highly energetic laser pulse induces a plasma
 - Plasma generates excited states of the elements
 - Detection of the characteristic light of the emitting elements
 - Application in undersea mining (INESC TEC) / on land for explosive detection

Disadvantage: Sample can be ignited by the plasma »»remote operation

Source: Wikipedia:,Courtesy of US Army Research Laboratory

Other Laser-based techniques

- Laser-induced fluorescence
 - Excitation at 266 nm, detection of fluorescence emission and life times
 - Detection of pollutants like PAH and BTEX
 - Developed by Laser Laboratory Göttingen

Chemical sensing
ELECTROCHEMISTRY

- Electro-chemical (FHG-ICT)
- electrochemical sensor as payload aboard unmanned vehicles
 - autonomous operation (AUV):
 - uses own power and neural network
 - remotely operated (ROV):
 - power and communication linked to vehicle
 - successfully tested with:
 - TNT, PETN in North Sea and Baltic Sea

© Rabenecker, 2018

Online

- Electro-chemical (FHG-ICT)
- results

- high sensitivity detection of 1 ng (10E-9 gram) absolute amount of explosive
- autonomous (AUV) & remotely controlled (ROV)
- detection successful at a distance of 1-2 m

ICT

Chemical sensing CHROMATOGRAPHY

Chromatography

- Ion chromatography (IC)
- Capillary electrophoresis (CE)
- Free-flow electrophoresis(FFE)

© Fraunhofer ICT

https://www.ict.fraunhofer.de/de/komp/ae/sa.html

Liquid Chromatography Decision Aid for Marine Munitions

Triple Quadrupole MS

Liquid Chromatography

JPI

Acclaim E2 Explosives column (Thermo Fisher) @ 25°C

Eluent A: H_20 (10 mM NH₄Ac + 2.7 mL Acetic Acid, pH 4)

Eluent B: AcCN (10 mM NH₄Ac + 2.7 mL Acetic Acid)

Period 1, Experiment 1			
Experiment Type:	MRM		
Num. Cycles:	1864		
Polarity:	Negative		
Period Cycle Time:	1297 ms		
Experiment Parameters			
Parameter	Value		
CAD	-2		
CUR	35		
GS1	60		
GS2	65		
NC	6		
TEM	350		
Mass Range Parameters			
Parameter	Value		
СХР	-15		
EP	-10		

Name	Q1	Q3	Dwell (ms	CE	DP
HMX_1	355	46	20	-55	-60
HMX_2	342	46	20	-55	-80
RDX_1	281	46	20	-50	-40
RDX_2	267	46	20	-50	-50
TNB_1	213	183	20	-20	-50
TNB_2	213	167	20	-20	-40
1-3DNB_1	168	138	20	-20	-50
1-3DNB_2	168	46	20	-40	-40
1-4DNB_1	168	138	20	-15	-40
1-4DNB_2	138	108	20	-25	-80
NB_1	123	93	20	-20	-140
NB_2	123	108	20	-25	-50
Tertyl_1	287	241	20	-20	-50
Tertyl_2	287	213	20	-20	-50
TNT_1	227	197	20	-20	-60
TNT_2	227	210	20	-15	-4(
TNT_3	226	183	20	-20	-80
2-5DNT_1	182	152	20	-15	-4(
2-5DNT_2	182	122	20	-35	-130
2-4DNT_1	182	138	20	-20	-60
2-4DNT_2	182	165	20	-15	-70
NT_1	137	121	20	-20	-50
NT_2	137	108	20	-20	-50
4ADNT_1	197	120	20	-20	-90
4ADNT_2	197	167	20	-15	-90
2ADNT_1	197	120	20	-25	-70
2ADNT_2	197	167	20	-20	-70
HADNT_1	183	166	20	-20	-50
HADNT_2	183	121	20	-20	-50
DANT_1	167	137	20	-15	-80
DANT_2	167	148	20	-20	-80
TAT_1	137	93	20	-20	- 30
TAT_2	137	109	20	-20	-90
TNAzoxyT_1	406	169	20	-25	-60
TNAzoxyT_2	406	360	20	-15	-80
TNAzT_1	390	344	20	-20	-50
TNAzT_2	390	197	20	-20	-50
TNBA_1	257	167	20	-20	-50
TNBA_2	257	137	20	-20	-50
DNBA_1	211	167	20	-15	-30
DNBA_2	211	137	20	-25	- 30
NBA_1	167	137	20	-20	-50
NBA_2	167	123	20	-20	-50

Chemical sensing
BIOCHEMISTRY

Microfluidic system (1/2)

Andre A. Adams: REMUS100 AUV with an integrated microfluidic system for explosives detection

Microfluidic system (2/2)

Induced expression of the CBR1 gene in Daphnia magna upon exposure to TNT

(Semi-quantitative PCR)

© Prof. Dr. E. Maser, J. Strehse; Uni Kiel

The toxic effect of TNT/STV on microalga *Prorocentrum* cassubicum was observed at concentrations of \geq 30 mg/l

© Dr. Opayi Mudimu, Prof. Dr. R. Schulz, Uni Kiel

JPI OCEANS

JPI-O - Joint Action "Munitions in the sea"

Genetic response on MC

What next?

- What appears "relevant" regarding
 - Safety remote sensing of MC (e.g. in-situ Neutron Gamma Radiation Spectrometry)
 - MSFD GES2020 and monitoring of MC
 - Toxicology and Detection limits (currently and in future)

© Duda, 2017 - Uni Kiel

Sources & Links (1/2)

- Passive sampling
 - F. Pfeiffer projectfritz@web.de
 - Nicolas Estoppey, DOI: <u>10.1021/es101321v</u> und <u>10.1016/j.scitotenv.2016.07.092.</u>
- Bio-Monitoring
 - Blue Mussel: Strehse et. al., DOI: <u>10.1016/j.marpolbul.2018.08.028</u>
- MC & transformation
 - Aaron Beck, DOI: 10.3389/fmars.2018.00141
- Microfluidic system
 - André A. Adams, et. al., DOI: <u>10.1007/s00216-013-6853-x</u>
- Electrochemistry
 - Peter Rabenecker, https://www.ict.fraunhofer.de/de/komp/ae/sa.html
- HPLC-QQQ-MS
 - Nadine Goldenstein, Thünen-Institute TI-FI (DAIMON partner)
- Laser Spectrometry
 - Laser Laboratory Göttingen, Dr. Wackerbarth (MUNITECT)
 - SubSeaSpec UG, Dr. Torben Gentz

Sources & Links (2/2)

- Science partners
 - GEOMAR <u>www.geomar.de</u>
 - Fraunhofer <u>https://www.ict.fraunhofer.de/en/comp/es/vu</u> <u>e.html</u>
 - <u>https://www.igd.fraunhofer.de/kompetenzen/t</u> <u>echnologien/underwater-vision</u>
 - University Kiel
 - Toxicology
 <u>https://www.toxi.uni-kiel.de</u>
 - Botany https://www.biotechnologie.unikiel.de/de/mitarbeiter/1-1
 - IOW <u>www.oi-warnemuende.de</u>
 - TI FI <u>www.thuenen.de</u>
 - AWI <u>www.awi.de</u>
 - Laser Laboratory <u>https://www.llg-ev.de/</u>

- Science projects
 - UDEMM <u>https://udemm.geomar.de</u>
 - DAIMON <u>www.daimonproject.com</u>
 - MODUM <u>E-Book</u>
 - CHEMSEA <u>http://chemsea.eu</u>
- German Programme
 - <u>www.underwatermunitions.de</u>
- Business
 - EGEOS GmbH, Kiel <u>www.egeos.de</u>
 - SubSeaSpec UG <u>www.subseaspec.com</u>
 - Fritz Pfeiffer projectfritz@web.de
- Switzerland [FR]
 - <u>https://www.vbs.admin.ch/fr/themes/environ</u> <u>nement/munitions-lacs-suisses.html</u>
 - <u>https://www.researchgate.net/profile/Nicolas</u>
 <u>_Estoppey</u>